目的:合成核壳结构的Fe3O4@Au多功能纳米材料,并对其形成机制进行探究。方法:通过"layer-by-layer法"和"种子生长法",合成了直径50-100 nm的铁核金壳的复合纳米颗粒,利用SEM、HRTEM、FTIR、XRD、SQUID等一系列手段测试表征其微观结构特征和磁学特性。最后利用数学模型进行计算,探讨这种纳米复合结构的形成机制。结果:合成得到了Fe3O4@Au颗粒,其机理可能是对pH敏感的聚合物保护剂(PEI,聚乙烯亚胺),由于其伸缩或者舒展的空间结构,导致Fe3O4-Au seed纳米颗粒聚集,并将金还原及生长于表面,最终形成Fe3O4@Au。结论:合成了核壳结构的Fe3O4@Au颗粒,这种具有核壳结构的多功能材料不仅可以应用于将来的磁性分离,而且还可以应用于生物分子的检测。
Objective: To synthesize core/shell Fe3O4@Au nanoparticles as multifunction nano materials,and investigate the formation mechanism.Methods: We utilized the microwave oven syntheses the magnetic nanoparticles with diameter of 40 nm,which were used as core materials for the reduction of gold precursors,Fe3O4@Au nanoparticles with core-shell structure with diameter of 50~100 nm was then synthesized with layer-by-layer growth.The core-shell nanocomposites have been characterized using HRTEM,SEM,FTIR,XRD and SQUID techniques.The spherical core-shell model was introduced to investigate the formation mechanism.Results: We synthesized core/shell Fe3O4@Au nanoparticles.The possible mechanism was: pH-sensitive polymer(PEI),owing to a shrunken or stretched structure of PEI,leaded to the aggregation of the Fe3O4-Au seed nanoparticles,then gold reduces onto the surface of Fe3O4-Au seed nanoparticles.Conclusion: We synthesized core/shell Fe3O4@Au nanoparticles and this core/shell multifunction nano materials will not only have external magnetic separation by the core of Fe3O4,but also detect the large biological molecule using the shell of gold.