位置:成果数据库 > 期刊 > 期刊详情页
基于GA优化小波LS-SVR的惯性器件故障预报
  • ISSN号:1001-506X
  • 期刊名称:《系统工程与电子技术》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]第二炮兵工程学院302教研室,陕西西安710025
  • 相关基金:国家自然科学基金(60736026);国家教育部新世纪优秀人才支持计划资助课题.
中文摘要:

为了提高最小二乘支持向量回归机的性能,将Morlet小波核函数引入其中,形成了最小二乘小波支持向量回归机模型。利用待优化的参数重构模型的目标函数和约束条件,并在此基础上通过遗传算法进行参数选择,从而提高了该模型的泛化能力。将最小二乘小波支持向量回归机应用于导弹陀螺仪的漂移趋势预测,仿真实验结果表明了该方法的有效性和可行性,因此可以为陀螺仪的故障预报、可靠性辅助决策提供依据。

英文摘要:

To improve the ability of least square support vector regression algorithm, a least square wavelet support vector regression model by introducing the Morlet wavelet kernel is presented. The object function and constraint condition are reconstructed by the parameters to be optimized. On the base of it, the model parameters are optimized through genetic algorithm. As a result, the model attains the better generalization ability. The least square wavelet support vector regression model is used to forecast the missile gyroscope's drift tendency. The simulation experiment results indicate the feasibility and validation of the algorithm. So it can provide basis for the gyroscope's fault prediction and reliability aid decision.

同期刊论文项目
期刊论文 166 会议论文 17 获奖 6 著作 2
同项目期刊论文
期刊信息
  • 《系统工程与电子技术》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团公司
  • 主办单位:中国航天科工防御技术研究院 中国宇航学会 中国系统工程学会
  • 主编:施荣
  • 地址:北京142信箱32分箱
  • 邮编:100854
  • 邮箱:xtgcydzjs@126.com
  • 电话:010-68388406
  • 国际标准刊号:ISSN:1001-506X
  • 国内统一刊号:ISSN:11-2422/TN
  • 邮发代号:82-269
  • 获奖情况:
  • 全国中文核心期刊,全国优秀科技期刊,中国科技论文统计用刊,中国期刊方阵“双百”期刊
  • 国内外数据库收录:
  • 德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:34341