一一个 posteriori 错误评估者为 nonconforming 被获得一个线性椭圆形的问题的有限元素近似,它被使用一个非局部的近似人工的边界条件从一个相应无界的领域问题导出。我们的方法能容易被扩大获得一个 posteriori 错误的一个班为各种各样的一致和 nonconforming 的评估者有不同人工的边界条件的问题的有限元素近似。可靠性和效率我们的一个 posteriori 错误评估者被数字例子严厉地证明并且被验证。[从作者抽象]
An a posteriori error estimator is obtained for a nonconforming finite element approximation of a linear elliptic problem, which is derived from a corresponding unbounded domain problem by applying a nonlocal approximate artificial boundary condition. Our method can be easily extended to obtain a class of a posteriori error estimators for various conforming and nonconforming finite element approximations of problems with different artificial boundary conditions. The reliability and efficiency of our a posteriori error estimator are rigorously proved and are verified by numerical examples.