Aiming at the non-stationary features of the roller bearing fault vibration signal,a roller bearing fault diagnosis method based on improved Local Mean Decomposition(LMD)and Support Vector Machine(SVM)is proposed.In this paper,firstly,the wavelet analysis is introduced to the signal decomposition and reconstruction;secondly,the LMD method is used to decompose the reconstruction signal obtained by the wavelet analysis into a number of Product Functions(PFs)that include main fault characteristics,thus,the initial feature vector matrixes could be formed automatically;Thirdly,by applying the Singular Value Decomposition(SVD)techniques to the initial feature vector matrixes,the singular values of the matrixes can be obtained,which can be used as the fault feature vectors of the roller bearing and serve as the input vectors of the SVM classifier;Finally,the recognition results can be obtained from the SVM output.The results of analysis show that the proposed method can be applied to roller bearing fault diagnosis effectively.
Aiming at the non-stationary feattwes of the roller bearing fault vibration signal, a roller bearing fault diagnosis methtxt based on improved Local Mean Decomposition (LMD) and Support Vector Machine (SVM) is proposed. In this paper, firstly, the wavelet analysis is introduced to the signal decomposition and reconstruction; secondly, the LMD method is used to decompose the recomtnion signal obtained by the wavelet analysis into a ntmaber of Product Ftmctions (PFs) that include main fault characteristics, thus, the initial feattwe vector matrixes could be formed automatically; Thirdly, by applying the Singular Valueition (SVD) techniques to the initial feature vector matrixes, the singular values of the matrixes can be obtained, which can be used as the fault feature vectors of the roller bearing and serve as the input vectors of the SVM classifier; Finally, the recognition results can be obtained from the SVM output. The results of analysis show that the propsed method can be applied to roller beating fault diagnosis effectively.