位置:成果数据库 > 期刊 > 期刊详情页
A Roller Bearing Fault Diagnosis Method Based on Improved LMD and SVM
  • ISSN号:1004-132X
  • 期刊名称:《中国机械工程》
  • 时间:0
  • 分类:O151.2[理学—数学;理学—基础数学] TP277[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China, [2]College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
  • 相关基金:This research was supported by Chinese National Science Foundation Grant (No. 50775068), China Postdoctoral Science Foundation funded project (No. 20080430154) and High-Tech Research and Development Program of China (No. 2009AA04Z414). thor: Jun-sheng CHENG(signalp@tom. corn)
中文摘要:

Aiming at the non-stationary features of the roller bearing fault vibration signal,a roller bearing fault diagnosis method based on improved Local Mean Decomposition(LMD)and Support Vector Machine(SVM)is proposed.In this paper,firstly,the wavelet analysis is introduced to the signal decomposition and reconstruction;secondly,the LMD method is used to decompose the reconstruction signal obtained by the wavelet analysis into a number of Product Functions(PFs)that include main fault characteristics,thus,the initial feature vector matrixes could be formed automatically;Thirdly,by applying the Singular Value Decomposition(SVD)techniques to the initial feature vector matrixes,the singular values of the matrixes can be obtained,which can be used as the fault feature vectors of the roller bearing and serve as the input vectors of the SVM classifier;Finally,the recognition results can be obtained from the SVM output.The results of analysis show that the proposed method can be applied to roller bearing fault diagnosis effectively.

英文摘要:

Aiming at the non-stationary feattwes of the roller bearing fault vibration signal, a roller bearing fault diagnosis methtxt based on improved Local Mean Decomposition (LMD) and Support Vector Machine (SVM) is proposed. In this paper, firstly, the wavelet analysis is introduced to the signal decomposition and reconstruction; secondly, the LMD method is used to decompose the recomtnion signal obtained by the wavelet analysis into a ntmaber of Product Ftmctions (PFs) that include main fault characteristics, thus, the initial feattwe vector matrixes could be formed automatically; Thirdly, by applying the Singular Valueition (SVD) techniques to the initial feature vector matrixes, the singular values of the matrixes can be obtained, which can be used as the fault feature vectors of the roller bearing and serve as the input vectors of the SVM classifier; Finally, the recognition results can be obtained from the SVM output. The results of analysis show that the propsed method can be applied to roller beating fault diagnosis effectively.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国机械工程》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国机械工程学会
  • 主编:董仕节
  • 地址:湖北工业大学772信箱
  • 邮编:430068
  • 邮箱:paper@cmemo.org.cn
  • 电话:027-87646802
  • 国际标准刊号:ISSN:1004-132X
  • 国内统一刊号:ISSN:42-1294/TH
  • 邮发代号:38-10
  • 获奖情况:
  • 1997年获中国科协期刊一等奖,第二届全国优秀科技...,机械行业优秀期刊一等奖,1999年获首届国家期刊奖,2001年获首届湖北十大名刊,中国期刊方阵“双高”期刊,2003第二届国家期刊奖提名奖,百种中国杰出学术期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:50788