位置:成果数据库 > 期刊 > 期刊详情页
Numerical investigation of Richtmyer-Meshkov instability driven by cylindrical shocks
  • ISSN号:0567-7718
  • 期刊名称:《力学学报:英文版》
  • 时间:0
  • 分类:O32[理学—一般力学与力学基础;理学—力学]
  • 作者机构:[1]LNM, Institute of Mechanics, Chinese Academy of Sciences,Beijing 100080, China, [2]Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
  • 相关基金:The project supported by the National Natural Science Foundation of China (10176033, 10135010 and 90205025). The English text was polished by Yunming Chen.
中文摘要:

在这篇论文,有高顺序精确性和高分辨率的一个数字方法被开发模仿 Richtmyer-Meshkov (RM ) 圆柱的冲击波驾驶的不稳定性。在圆柱的坐标的可压缩的 Euler 方程为圆柱的几何学和精确的组控制计划被采用到 discretize 的第三份订单被采用方程。而且,一种适应格子技术被开发在动人的接口附近精制格子改进数字解决方案的分辨率。模拟的结果展出了 RM 不稳定性的进化过程,并且 Atwood 数字的效果被学习。越大 Atwood 数字的绝对值,越 larger 不安振幅。非线性的效果在圆柱的几何学显然表明更多。从杆中心反映的吃惊加速接口为第二次,更加复杂化物件典当和第二等的吃惊的接口进化过程,和如此的现象被学习。

英文摘要:

In this paper, a numerical method with high order accuracy and high resolution was developed to simulate the Richtmyer-Meshkov(RM) instability driven by cylindrical shock waves. Compressible Euler equations in cylindrical coordinate were adopted for the cylindrical geometry and a third order accurate group control scheme was adopted to discretize the equations. Moreover, an adaptive grid technique was developed to refine the grid near the moving interface to improve the resolution of numerical solutions. The results of simulation exhibited the evolution process of RM instability, and the effect of Atwood number was studied. The larger the absolute value of Atwood number, the larger the perturbation amplitude. The nonlinear effect manifests more evidently in cylindrical geometry. The shock reflected from the pole center accelerates the interface for the second time, considerably complicating the interface evolution process, and such phenomena of reshock and secondary shock were studied.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《力学学报:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国力学学会 中国科学院力学研究所
  • 主编:卢天健
  • 地址:北京市海淀区北四环西路15号
  • 邮编:100190
  • 邮箱:actams@cstam.org.cn
  • 电话:010-62536271
  • 国际标准刊号:ISSN:0567-7718
  • 国内统一刊号:ISSN:11-2063/O3
  • 邮发代号:2-703
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:352