许多科学与工程优化问题往往需要转化为多目标旅行商问题进行求解,由于目标函数之间的冲突性,使得这类问题不存在能够优化所有目标函数的唯一最优解,而是存在一个Pareto最优解集或者Pareto Front。为了获得一个高质量的Pareto最优解集,提出了一种基于蚁群优化和差分进化的混合多目标进化算法。在提出的算法中,一方面采纳分解机制利用蚁群优化算子实现对Pareto最优解的开发,另一方面采纳拥挤度概念利用差分进化算子实现对Pareto Front的探索。通过对一组标准测试算例的仿真实验,结果表明所提出的算法比现有的算法能够获得分布性和收敛性更优的Pareto解集。