有序排列的磁性纳米结构由于其丰富的物理性质和数据存储方面的潜在应用而受到广泛关注.随着现代生长和显微成像技术的进步,构造原子量级的结构和探测它们独特的性质已经成为可能.本文回顾了贵金属表面上的磁性金属原子有序结构的近期研究结果,其中包括一维原子弦、二维六角超晶格和量子尺寸效应诱导的新奇结构.结合低温扫描隧道显微镜、动力学蒙特卡洛模拟等实验和理论相结合的手段,对这些结构的形成条件进行了讨论,并通过扫描隧道谱和紧束缚近似计算对这些结构中的特殊电子态性质进行了研究.此外,纳米尺寸围栏中的量子受限效应对原子扩散和自组织行为有显著的影响,产生了量子诱导的自组织生长,并且可以利用尺寸变化的开口围栏实现原子级的定量原子捕获,从而抑制由生长导致的统计涨落.
Ordered arrays of magnetic nanostructures have rich physical properties and potential applications, attracting much theoretical and experimental interest. These structures can now be fabricated and investigated at scales down to the atomic level. Herein, we review recent advances in the study of magnetic atomic structures on the surfaces of noble metals. These structures include one-dimensional strings, two-dimensional hexagonal superlatfices, and novel structures stabilized by quantum guiding. We focus on low-temperature scanning tunneling microscopy studies as well as kinetic Monte Carlo simulations and ab initio calculations, to discuss the self- assembly formation conditions. Combining the results of scanning tunneling spectroscopy and tight-binding calculations, we studied the spectra of these well-ordered structures. We also discuss how quantum confinement in nanocorrals significantly influences adatom diffusion and self-assembly, leading to quantum-guided self-assembly and self-regulated atom trapping in open nanocorrals.