位置:成果数据库 > 期刊 > 期刊详情页
向前型分段连续微分方程的数值解
  • ISSN号:1001-9847
  • 期刊名称:《应用数学》
  • 时间:0
  • 分类:O241.81[理学—计算数学;理学—数学]
  • 作者机构:[1]广东工业大学应用数学学院,广东广州510006
  • 相关基金:the National Natural Science Foundation of China(51008084)
中文摘要:

本文讨论了向前型分段连续微分方程Euler-Maclaurin方法的收敛性和稳定性,给出了Euler-Maclaurin方法的稳定条件,证明了方法的收敛阶是2n+2,并且得到了数值解稳定区域包含解析解稳定区域的条件,最后给出了一些数值例子用以验证本文结论的正确性.

英文摘要:

This paper is concerned with the convergence and the stability of Euler-Maclaurin methods for solutions of differential equations with piecewise constant arguments of advanced type.The conditions of stability for the Euler-Maclaurin methods are given.It is proved that the order of convergence is 2n+2.And the conditions under which the numerical stability region contains the analytic stability region are obtained.Finally,several numerical examples are given to demonstrate our main results.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《应用数学》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:华中科技大学
  • 主编:李大潜
  • 地址:武汉珞喻路1037号华中科技大学逸夫科技大楼南楼902室
  • 邮编:430074
  • 邮箱:yysx_hust@163.com
  • 电话:027-87543831
  • 国际标准刊号:ISSN:1001-9847
  • 国内统一刊号:ISSN:42-1184/O1
  • 邮发代号:38-61
  • 获奖情况:
  • 中国科学引文数据库来源期刊,中国学术期刊综合评价数据库来源期刊
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:4139