作为一种非金属半导体光催化剂,石墨相氮化碳(g一C_3N_4)已广泛应用于水中有机污染物去除、劈裂水产氢、二氧化碳还原制碳氢化合物燃料以及选择性氧化有机合成等许多光催化领域.然而,聚集态层状结构和粉末物理状态严重限制了g一C_3N_4在非均相光催化反应中的实际应用.一方面,g一C_3N_4的聚集态层状结构限制了光生载流子的表面迁移并增加了光催化反应的传质阻力.另一方面,由于附加的固一液分离步骤,粉体g一C_3N_4不便于实际应用.因此,为解决g一C_3N_4的上述缺点,一些研究已经进行并集中于g一C_3N_4的形貌控制合成及负载.构建多孔微观结构是合成具有优异光催化活性g一C_3N_4的有效途径之一.本文研究表明,盐酸或乙二醇预处理的三聚氰胺均可用作制备多孔g一C_3N_4的前驱体.有趣的是,由于在多孔g一C_3N_4制备体系中不同制孔单元的共存,与通过盐酸或乙二醇单独预处理的三聚氰胺制备的多孔g一C_3N_4相比,通过二者共同预处理的三聚氰胺制备的多孔g一C_3N_4具有更丰富的多孔微观结构.与制备负载型二氧化钛不同,由于在制备g一C_3N_4过程中缺少溶胶一凝胶步骤,因此负载型g一C_3N_4较难制备.而且,对于氟一锡氧化物(FTO)基底负载的g一C_3N_4,在实际应用中存在一些不足.首先,FTO基底的片状物理结构不利于反应底物的扩散.其次,FTO基底的吸光效应会导致光能损失,因此g一C_3N_4只能在FTO基底的单面负载.最后,在g一C_3N_4和FTO基底之间无化学作用,因此在光催化反应过程中不可避免造成g一C_3N_4的损失.因此,以盐酸/乙二醇共同预处理的三聚氰胺作原料,氢氟酸/3一氨基丙基三甲氧基硅烷共同预处理的石英棒作基底,首次制备了多孔g一C_3N_4和负载型多孔g一C_3N_4.丰富的多孔微观结构使得所制多孔g一C_3N_4具有优异的光催化活性;且由于多孔g一C_3N_4与石英棒基底间存
Porous g-C_3N_4 and supported porous g-C_3N_4 were fabricated for the first time by a simple strategy using pretreated melamine as a raw material and pretreated quartz rod as a substrate.The formation of a richly porous microstructure can be attributed to the co-existence of different pore-fabricating units in the preparation system for porous g-C_3N_4.The richly porous microstructure endowed the as-prepared porous g-C_3N_4 with an excellent photocatalytic activity.The as-prepared supported porous g-C_3N_4 exhibited considerable stability because of the existence of chemical interaction between porous g-C_3N_4 and the quartz rod substrate.The photocatalytic activity of the supported porous g-C_3N_4 was competitive with that of porous g-C_3N_4 in powder form because neither the surface migration of photogenerated electrons nor the diffusion of the target organic pollutant were affected by the construction of the quartz rod reactor.The photocatalytic activity of the as-prepared porous g-C_3N_4 and supported porous g-C_3N_4 was preliminarily evaluated by the treatment of single-component organic wastewater under visible-light irradiation.Subsequently,the as-prepared porous g-C_3N_4 was further applied in conventional hydrogen evolution and a new system for simultaneous hydrogen evolution with organic-pollutant degradation.The hydrogen yield and degradation efficiency both increased with increasing photocatalytic activity of the as-prepared materials in the system for simultaneous hydrogen evolution with organic-pollutant degradation.