位置:成果数据库 > 期刊 > 期刊详情页
基于小波分析及KNN的民族文字分类方法
  • ISSN号:1000-7180
  • 期刊名称:《微电子学与计算机》
  • 时间:0
  • 分类:TP391.43[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]大连民族学院计算机科学与工程学院,辽宁大连116600
  • 相关基金:国家自然科学基金项目(60803096);国家民委项目(07DL07)
中文摘要:

提出一种基于小波分析的少数民族文字文字分类识别方法.该方法采用多辨识小波分解,从而获得小波能量和小波能量比例分布的特征描述,结合少数民族文字文本图片的纹理特征,选择加权KNN分类器.实验证明:该识别方法对藏文、西双版纳傣文、纳西象形文、维吾尔文、德宏傣文和彝文6种常用的少数民族文字及汉字、英语共8种文字的分类测试达到96%的识别效果.

英文摘要:

The method of recognizing the kinds of Chinese rninonty scripts based on wavelet analysis and K-Nearest Neighboui (KNN) is presented which adopts wavelet decomposition that obtains feature descriptor of wavelet energy and wavelet energy distribution proportion.Combined with the texture feature of Chinese minority scripts, radially classification in Feature- Weighted K- Nearest Neighbour(FWKNN). Among Chinese, English and Chinese minority scripts such as Tibetan, Tai Lue, Naxi Pictographs, Uighur, Tai Le, Yi, the experimental results show the recognition rate is up to 96 %.

同期刊论文项目
期刊论文 30 会议论文 8 专利 1
同项目期刊论文
期刊信息
  • 《微电子学与计算机》
  • 中国科技核心期刊
  • 主管单位:中国航天科技集团公司
  • 主办单位:中国航天科技集团公司第九研究院第七七一研究所
  • 主编:李新龙
  • 地址:西安市雁塔区太白南路198号
  • 邮编:710065
  • 邮箱:mc771@163.com
  • 电话:029-82262687
  • 国际标准刊号:ISSN:1000-7180
  • 国内统一刊号:ISSN:61-1123/TN
  • 邮发代号:52-16
  • 获奖情况:
  • 航天优秀期刊,陕西省优秀期刊一等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:17909