位置:成果数据库 > 期刊 > 期刊详情页
Maldetect:基于Dalvik指令抽象的Android恶意代码检测系统
  • ISSN号:1000-1239
  • 期刊名称:《计算机研究与发展》
  • 时间:0
  • 分类:TP309[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]浙江工业大学计算机科学与技术学院,杭州310023
  • 相关基金:国家自然科学基金项目(U1509214);浙江省自然科学基金项目(LY16F020035)
中文摘要:

提出了一个Android恶意代码的静态检测系统Maldetect,首先采用逆向工程将DEX文件转化为Dalvik指令并对其进行简化抽象,再将抽象后的指令序列进行N-Gram编码作为样本训练,最后利用机器学习算法创建分类检测模型,并通过对分类算法与N-Gmm序列的组合分析,提出了基于3-Gram和随机森林的优选检测方法.通过4000个Android恶意应用样本与专业反毒软件进行的检测对比实验,表明Maldetect可更有效地进行Android恶意代码检测与分类,且获得较高的检测率.

英文摘要:

A novel static Android malware detection system Maldetect is proposed in this paper. At first, the Dalvik instructions decompiled from Android DEX files are simplified and abstracted into simpler symbolic sequences. N-Gram is then employed to extract the features from the simplified Dalvik instruction sequences, and the detection and classification model is finally built using machine learning algorithms. By comparing different classification algorithms and N-Gram sequences, 3-Gram sequences with the random forest algorithm is identified as an optimal solution for the malware detection and classification. The performance of our method is compared against the professional antivirus tools using 4 000 malware samples, and the results show that Maldetect is more effective for Android malware detection with high detection accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349