位置:成果数据库 > 期刊 > 期刊详情页
用GA、PCA和改进SVM相结合进行车辆实时分类
  • ISSN号:1000-2367
  • 期刊名称:《河南师范大学学报:自然科学版》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]辽东学院信息学院,辽宁丹东118001
  • 相关基金:国家自然科学基金项目(60873042); 辽宁省教育厅科学研究项目(200805343)
作者: 曹伟[1]
中文摘要:

用GA、PCA和改进SVM结合进行车辆实时分类研究对公路管理和控制具有实际应用意义和社会效益。在某公路的匝道口两侧设置了8个测试点,对通过匝道口的车辆进行测试,提取特征向量,采用声波和振地波信号在匝道口进行了实时分类测试研究。由于特征向量的维数太高,用GA和PCA降低特征向量的维数,再用SVM和改进的SVM对特征向量进行分类,大大提高了分类精度。通过实验及分类得到声波和振地波的测试集分类精度最高分别是92.0%和76.1%,同时声波和振地波特征向量的维数降低至26和21,其相应的比率分别为95%和99%,独立集的分类精度分别为87.5%和71.3%。实验表明:用改进的SVM和GA、PCA结合的方法进行分类,其效果要优于单独使用主成分分析(PCA)、遗传算法(GA)以及它俩的结合使用的方法。

英文摘要:

It is practically and socially significant to real-time classificate vehicles using GA,PCA and improved SVM.Eight test points were set up on both sides of a road ramp to collect feature vectors of passing vehicles.Real-time classification test was conducted with acoustic and seismic signals.Over-high dimension of feature vectors was reduced using GA and PCA.Then,the feature vectors were classified with SVM and improved SVM;thereby the classification accuracy was greatly improved.The highest classification accuracy of acoustic and seismic signals obtained by experiments was 92.0% and 76.1%.The dimension of feature vectors of acoustic and seismic signals was reduced to 26 and 21,respectively,with corresponding ratio of 95% and 99%.The corresponding classification accuracy of independent set was 87.5% and 71.3%.Experiment result shows that the classification accuracy using GA,PCA and improved SVM is much higher than that of using PCA,GA alone or using two of them.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《河南师范大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:河南师范大学
  • 主办单位:河南师范大学
  • 主编:王记录
  • 地址:河南省新乡市建设东路46号
  • 邮编:453007
  • 邮箱:
  • 电话:0373-3329394 3329272
  • 国际标准刊号:ISSN:1000-2367
  • 国内统一刊号:ISSN:41-1109/N
  • 邮发代号:36-55
  • 获奖情况:
  • 国家新闻出版局、国家科委优秀学报奖,河南省科委、河南省教委优秀学报
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),英国农业与生物科学研究中心文摘,德国数学文摘,英国动物学记录,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:7535