A differential approach for self-optimizing diffusion Monte Carlo calculation was proposed in this paper, which is a new algorithm combining three techniques such as optimizing, diffusion and correlation sampling. This method can be used to directly compute the energy differential between two systems in the diffusion process, making the statistical error of calculation be reduced to order of 10-5 hartree, and recover about more than 80% of the correlation energy. We employed this approach to set up a potential energy surface of a molecule, used a 'rigid move' model, and utilized Jacobi transformation to make energy calculation for two configurations of a molecule having good positive correlation. So, an accurate energy differential could be obtained, and the potential energy surface with good quality can be depicted. In calculation, a technique called 'post-equilibrium remaining sample was set up firstly, which can save about 50% of computation expense. This novel algorithm was used to study the potenti
A differential approach for self-optimizing diffusion Monte Carlo calculation was proposed in this paper, which is a new algorithm combining three techniques such as optimizing, diffusion and correlation sampling. This method can be used to directly compute the energy differential between two system in the diffusion process, making the statistical error of calculation be reduced to Order of 10?-5 hartree, and recover about more than 80% of the correlation. We employed this approach to set up a potential energy surface of a molecule, used a “rigid move” model, and utilized Jacobi transformation to make energy calculation for two configurations of a molecule having good positive correlation. So, an accurate energy differential could be obtained, and the potential energy surface with good quality can be depicted. In calculation, a technique called “post-equilibrium remaining sample” was set up firstly, which can save about 50% of computation expense. This novel algorithm was used to study the potential as molecular spectroscopy and the energy variation in chemical reactions.