位置:成果数据库 > 期刊 > 期刊详情页
Wind tunnel simulation of the effects of freeze-thaw cycles on soil erosion in the Qinghai-Tibet Plateau
  • ISSN号:1001-8360
  • 期刊名称:《铁道学报》
  • 时间:0
  • 分类:S157.1[农业科学—土壤学;农业科学—农业基础科学] TU528.01[建筑科学—建筑技术科学]
  • 作者机构:Key Laboratory of Desert and Desertification/Dunhuang Gobi and Desert Research Station~State Key Laboratory ofFrozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy ofSciences, Lanzhou, Gansu 730000, China
  • 相关基金:funded by the National Natural Science Foundation of China(Grant No.41401611);the China Postdoctoral Science Foundation(Grant Nos.2014M560817 and 2015T81069);one of Special Fund for Forest Scientific Research in the Public Welfare(201504401);the Science and Technology Program of Gansu Province(Grant No.145RJZA118)
中文摘要:

Intense freezing and thawing actions occur in the Qinghai–Tibet Plateau because of its high elevation and cold temperature. The plateau’s unique environment makes it easy to generate wind erosion under dry, windy weather conditions, resulting in the emergence of desertification. As a major form of freeze–thaw erosion, freeze–thaw and wind erosion is displayed prominently on the Qinghai–Tibet Plateau. Therefore, in this study, soil samples were collected from the surface of the plateau to undergo freeze–thaw and wind erosion simulation experiments. Results show that wind erosion strength increases with an increasing number of freeze–thaw cycles, water content in the freezing–thawing process, and the difference in freeze–thaw temperatures. Therefore, in the conditions of water participation, the main reason for the freeze–thaw and wind erosion in the Qinghai–Tibet Plateau is the damage to the soil structure by repeated, fierce freeze–thaw actions, and the sand-bearing wind is the main driving force for this process. The research results have theoretical significance for exploring the formation mechanism of freeze–thaw and wind erosion in the Qinghai–Tibet Plateau, and provide a scientific basis for freeze–thaw desertification control in the plateau.

英文摘要:

Intense freezing and thawing actions occur in the Qinghai-Tibet Plateau because of its high elevation and cold temperature. The plateau's unique environment makes it easy to generate wind erosion under dry, windy weather conditions, resulting in the emergence ofdesertification. As a major form of freeze-thaw erosion, freeze-thaw and wind erosion is displayed prominently on the Qinghai-Tibet Plateau. Therefore, in this study, soil samples were collected from the surface of the plateau to undergo freeze-thaw and wind erosion simulation experiments. Results show that wind erosion strength increases with an increasing number of freeze-thaw cycles, water content in the freezing-thawing process, and the difference in freeze-thaw temperatures. Therefore, in the conditions of water participation, the main reason for the freeze-thaw and wind erosion in the Qinghai-Tibet Plateau is the damage to the soil structure by repeated, fierce freeze-thaw actions, and the sand-bearing wind is the main driving force for this process. The research results have theoretical significance for exploring the formation mechanism of freeze-thaw and wind erosion in the Qinghai-Tibet Plateau, and provide a scientific basis for freeze-thaw desertification control in the plateau.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《铁道学报》
  • 中国科技核心期刊
  • 主管单位:中国科协
  • 主办单位:中国铁道学会
  • 主编:王德
  • 地址:北京复兴路10号中国铁道学会
  • 邮编:100844
  • 邮箱:tdxb@vip.163.com
  • 电话:010-51848021 51873116
  • 国际标准刊号:ISSN:1001-8360
  • 国内统一刊号:ISSN:11-2104/U
  • 邮发代号:2-308
  • 获奖情况:
  • 中国期刊方阵“双效”期刊,百种中国杰出学术期刊,中国科协第一、二届优秀学术期刊,入选学位与研究生教育中文重要期刊目录,中文核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:17030