切触黎曼流形,其殆复结构不一定是可积的,是CR几何中伪厄尔米特流形的一般情形.选取TWT联络作为切触黎曼流形上的联络,在CR情形下它就是TW联络.推广CR几何中的伪厄尔米特浸入得到切触黎曼几何中的切触黎曼浸入,可以证明任何切触黎曼浸入一定是极小的.
Contact-Riemannian manifolds, without necessarily integrable complex structures,are the generalization of pseudohermitian manifolds in CR geometry. The Tanaka-Webster-Tanno connection plays the role of Tanaka-Webster connection in the pseudohermitian case. Pseudo-hermitian immersions of CR geometry can be developed to contact-Rimannian immersions of contact Riemannian manifold, and it can be proved that any contact-Riemannian immersion is minimal.