位置:成果数据库 > 期刊 > 期刊详情页
面向随机模型检验的模型抽象技术
  • ISSN号:1000-9825
  • 期刊名称:《软件学报》
  • 时间:0
  • 分类:TP393.08[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] P207[天文地球—测绘科学与技术]
  • 作者机构:[1]State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210046, China, [2]Department of Computer Science, School of Computing, National University of Singapore, Singapore 117417, Singapore, [3]College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016, China
  • 相关基金:The work was supported by the National Natural Science Foundation of China under Grant Nos. 61303022 and 61472179, the China Postdoctoral Science Foundation under Grant No. 2013M531328, the Natural Science Foundation of Shandong Province of China under Grant No. ZR2012FQ013, the Project of Shandong Province Higher Educational Science and Technology Program under Grant No. J13LN10, and the Science and Technology Program of Taian of China under Grant No. 201330629. This work was partially supported by Jiangsu Collaborative Innovation Center of Novel Software Technology and Industrialization of China.
中文摘要:

随机的模型检查是检查的古典模型的最近的延期和归纳,它集中于检查一个系统模型的时间的性质的份量上。PCTL * 是重要量的性质说明语言之一,它与概率界限严格地是比 PCTL (概率的计算树逻辑) 或 LTL (线性时间的逻辑) 更富有表达力的。目前, PCTL * 随机的模型检查算法是很复杂的,并且不能提供一个公式为什么或不控制一个给定的模型的任何相关解释。为处理这个问题,为 PCTL 的一条直觉、简明的途径 * 随机的模型与证据检查在这份报纸被提出,它包括:为 PCTL 介绍比赛语义 * 在 release-PNF (版本积极的正常形式) ,定义 PCTL * 随机的模型检查游戏,用策略在比赛解决完成 PCTL * 随机的模型检查,并且作为证据精制赢的策略证明随机的模型检查结果。稳固和基于比赛的 PCTL 的完全性 * 随机的模型检查被证明,并且它的复杂性匹配知道更低、上面的界限。基于比赛的 PCTL * 随机的模型检查算法在一个视觉原型工具中被实现,并且它的可行性被一个解说性的例子表明。

英文摘要:

Stochastic model checking is a recent extension and generalization of the classical model checking, which focuses on quantitatively checking the temporal property of a system model. PCTL* is one of the important quantitative property specification languages, which is strictly more expressive than either PCTL (probabilistic computation tree logic) or LTL (linear temporal logic) with probability bounds. At present, PCTL* stochastic model checking algorithm is very complicated, and cannot provide any relevant explanation of why a formula does or does not hold in a given model. For dealing with this problem, an intuitive and succinct approach for PCTL* stochastic model checking with evidence is put forward in this paper, which includes: presenting the game semantics for PCTL* in release-PNF (release-positive normal form), defining the PCTL* stochastic model checking game, using strategy solving in game to achieve the PCTL* stochastic model checking, and refining winning strategy as the evidence to certify stochastic model checking result. The soundness and the completeness of game-based PCTL* stochastic model checking are proved, and its complexity matches the known lower and upper bounds. The game-based PCTL* stochastic model checking algorithm is implemented in a visual prototype tool, and its feasibility is demonstrated by an illustrative example.

同期刊论文项目
期刊论文 134 会议论文 96 获奖 18 专利 78 著作 1
同项目期刊论文
期刊信息
  • 《软件学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所 中国计算机学会
  • 主编:赵琛
  • 地址:北京8718信箱中国科学院软件研究所
  • 邮编:100190
  • 邮箱:jos@iscas.ac.cn
  • 电话:010-62562563
  • 国际标准刊号:ISSN:1000-9825
  • 国内统一刊号:ISSN:11-2560/TP
  • 邮发代号:82-367
  • 获奖情况:
  • 2001年入选中国期刊方阵“双百期刊”,2000年荣获中国科学院优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:54609