We analyze the process of a discrete-time quantum walk over 4 steps and 5 positions with linear optics elements. The quantum walk is characterized by a ballistic spread of wavepackets along 4 steps. By employing different initial coin states,we observe non-Gaussian distribution of the walkers’ finial position, which characterizes a quadratic enhancement of the spread of photon wavepackets compared to a classical random walk. By introducing controllable decoherence, we observe the quantum-to-classical transmission in a quantum walk architecture.
We analyze the process of a discrete-time quantum walk over 4 steps and 5 positions with linear optics elements. The quantum walk is characterized by a ballistic spread of wavepackets along 4 steps. By employing different initial coin states, we observe non-Gaussian distribution of the walkers' finial position, which characterizes a quadratic enhancement of the spread of photon wavepackets compared to a classical random walk. By introducing controllable decoherence, we observe the quantum-to-classical transmission in a quantum walk architecture.