电活性微生物(产电微生物和亲电微生物)通过与外界环境进行双向电子和能量传递来实现多种微生物电催化过程(包括微生物燃料电池、微生物电解电池、微生物电催化等),从而实现在环境、能源领域的广泛应用,并为开发有效且可持续性生产新能源或大宗精细化学品的工艺提供了新机会。但是,电活性微生物的胞外电子传递效率比较低,这已经成为限制微生物电催化系统在工业应用中的主要瓶颈。以下综述了近年来利用合成生物学改造电活性微生物的相关研究成果,阐明了合成生物学如何用于打破电活性微生物胞外电子传递途径低效率的瓶颈,从而实现电活性微生物与环境的高效电子传递和能量交换,推动电活性微生物电催化系统的实用化进程。
Electroactive bacteria, including electrigenic bacteria(exoelectrogens) and electroautotrophic bacteria, implement microbial bioelectrocatalysis processes via bi-directional exchange of electrons and energy with environments, enabling a wide array of applications in environmental and energy fields, including microbial fuel cells( MFC), microbial electrolysis cells(MEC), microbial electrosynthesis(MES) to produce electricity and bulk fine chemicals. However, the low efficiency in the extracellular electron transfer(EET) of exoelectrogens and electrotrophic microbes limited their industrial applications. Here, we reviewed synthetic biology appr oaches to engineer electroactive microorganisms to break the bottleneck of their EET pathways, to achieve higher efficiency of EET of a number of electr oactive microorganisms. Such efforts will lead to a breakthrough in the applications of these electroact ive microorganisms and microbial electrocatalysis systems.