这份报纸学习作者原来为呼吸空气的极超音速的车辆(AHV ) 建议的一个追踪的控制方法的灵活性。这个方法的主要特征设计追踪的控制器没有取消,但是使用飞行器推进,以及 elevator-to-lift couplings。由介绍虚拟输入,追踪的控制器和外部参考书轨道被解决线性代数学的方程的一个系统同时获得。线性代数学的方程的这个系统总是是可解决的,相应同类的系统的解决方案空格具有尺寸 3,它在选择或定义免费变量导致许多自由。灵活性被 AHV 的飞行要求涉及免费变量的定义的事实反映。不同演习上的三案例研究,即,在经常的动态压力的飞行,在变体的飞行动态压力和飞行与快爬率被认为验证这个方法的灵活性。模拟结果显示出它的有效性和灵活性。
This paper studies the flexibility of a tracking control method originally proposed by the authors for air-breathing hypersonic vehicles (AHVs). The main feature of this method is to design the tracking controller without canceling but using aero-propulsive, as well as elevator-to-lift couplings. By introducing a virtual input, the tracking controller and external reference trajectories are simultaneously obtained by solving a system of linear algebraic equations. This system of linear algebraic equations is always solvable and the solution space of the corresponding homogeneous system is of dimension 3, which leads to much freedom in choosing or defining the free variables. The flexibility is reflected by the fact that the flight requirements of AHVs are involved in the definition of the free variables. Three case studies on different maneuvers, i.e., flight at constant dynamic pressure, flight at variant dynamic pressure and flight with fast climb rate are considered to verify the flexibility of this method. Simulation results show its effectiveness and flexibility.