考察了平面近三角剖分图的最大亏格与独立边集之间的关系.设G^*是平面近三角剖分图G的一个平面嵌入的几何对偶,如果G^*有[1/2ψ]个独立边集,那么图G的最大亏格γM(G)≥【1/2β(G)】-1,这里ψ和β(G)分别表示图G在平面上嵌入的面数与G的Betti数.特别地,如果ψ=0mod2,即G有1-因子,则G是上可嵌入的.作为应用,证明了几个已知的结果.
This paper proved that if the geometric dual G^* of a near-triangulation plane graph G contains a set of [1/2ψ] independent edges, then the maximum genus γM(G) of Gis at least [1/3β(G)]- 1, where ψ and β(G)represent the number of faces of plane G and the Betti number of G. In particular, γM(G) =1/2β(G)if ψ= 0 rood 2. As applications, several known results are presented.