位置:成果数据库 > 期刊 > 期刊详情页
中文领域本体学习中术语的自动抽取
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]电子工程学院网络工程系,合肥230037
  • 相关基金:电子工程学院博士研究生创新基金资助项目(2008006)
中文摘要:

提出一种领域术语自动抽取的混合策略,首先进行多字词候选术语抽取和分词,然后合并其结果,最后通过领域相关度和领域主题一致度抽取出最终领域术语。在多字词抽取和最终领域术语抽取阶段分别对现有方法进行了改进,降低了字符串分解的时间复杂度并提高了领域术语抽取的准确率和召回率。实验表明,术语抽取准确率为90.64%,优于现有的抽取方法。

英文摘要:

This paper introduced a hybrid strategy to extract domain-specific terms automatically. At the beginning, executed multi-word candidate extraction and Chinese word segmentation at the same time with two threads. Then merged their result sets. Finally extracted the domain-specific terms with domain relevance and domain topic consensus method. In multi-word candidate extraction and domain-specific term extraction periods, it improved the presented methods respectively to decrease time complexity of string decomposing and increase the precision and recall. Experimental results show that the precision of hy- brid method achieves 90.64% , which is better than that of presented Chinese domain-specific term extraction methods.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049