位置:成果数据库 > 期刊 > 期刊详情页
基于潜在语义分析的汉语问答系统答案提取
  • ISSN号:0254-4164
  • 期刊名称:《计算机学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]昆明理工大学信息工程与自动化学院,昆明 650051, [2]云南省计算机技术应用重点实验室,昆明 650051, [3]北京理工大学计算机科学工程系,北京 100081
  • 相关基金:本课题得到教育部博士点基金(20050007023)、国家自然科学基金(60663004)和云南省信息技术基金(2002IT03)资助.
中文摘要:

为了解决在汉语问答系统答案提取时,由于词的同义或多义现象而导致的“漏提”或“错提”等问题,提出了一种基于潜在语义分析(LSA)的问题和答案句子相似度计算方法.它利用空间向量模型作为问题和句子的表示方法,借助于潜在语义分析理论,对大量问答作句子语料统计分析,构建了一个潜在的词一句子语义空间,从而消除了词之间的相关性,并在语义空间上实现了问题与答案句子相似度计算,有效地解决了词的同义和多义问题.最后结合问题类型和相似度计算结果,对汉语基于事实的简单陈述问题进行了答案句子提取实验.答案提取的MRR值达到了0.47,明显优于空间向量模型.结果说明该方法具有很好的效果.

英文摘要:

When extracting answers in Chinese question-answering system, synonymy will cause to lose several correct answers, and polysemy will cause to extract wrong answers. In order to solve these problems, this paper proposes a method to calculate similarity between question and sentence based on Latent Semantic Analysis (LSA). This method represents the question and sentence with space vector model, statistically analyzes the abundant question-answering sentence pair corpus with the help of latent semantic analysis theory, and constructs a latent word-sentence semantic space, which gets rids of the correlativity between word. And then similarity calculation between question and sentence is implemented in this semantic space. So the question of synonymy and polysemy is solved effectively. Finally, combining question type and similarity between question and sentence, the experiment on extracting sentence as answer for Chinese factoid question is done. The MRR value with LSA is 0.47, which is better than VSM obviously. The results show that this method makes a very better effect.

同期刊论文项目
期刊论文 23 会议论文 5
同项目期刊论文
期刊信息
  • 《计算机学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国计算机学会 中国科学院计算技术研究所
  • 主编:孙凝晖
  • 地址:北京中关村科学院南路6号
  • 邮编:100190
  • 邮箱:cjc@ict.ac.cn
  • 电话:010-62620695
  • 国际标准刊号:ISSN:0254-4164
  • 国内统一刊号:ISSN:11-1826/TP
  • 邮发代号:2-833
  • 获奖情况:
  • 中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国数学评论(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:48433