氧的非质量同位素分馏(mass—independent isotope fractionation)为全球变化研究提供了新方法。在介绍非质量同位素分馏的基础上,评述了氧同位素异常[△(^17O)3的表示方法以及氧的非质量同位素分馏的产生机制,重点综述了氧的非质量同位素分馏在地球科学中的应用。基于△(^17O)评估的生物圈生产力是全球总的生物生产力,打破了以往只能孤立地评估陆地或海洋生物生产力的瓶颈,奠定了在更广时空尺度上评估生物生产力的基础;△(^17O)能量化形成气溶胶硫酸盐和硝酸盐的气相与液相氧化反应路径的相对比例,为研究气溶胶和气候的互馈作用提供了新途径;冰芯中S同位素和△(^17O)的联合运用,不仅解决了冰芯中硫酸盐、硝酸盐的来源和运移问题,而且还为其形成的氧化过程提供了细节信息;而干旱区硫酸盐、硝酸盐矿物中△(^17O)的发现在解决一些长期有争议的沉积物成因和来源问题中起关键作用。氧的非质量同位素分馏还将在(古)大气臭氧活性、火山喷发柱化学和O、S、N生物地球化学循环等研究中发挥更大作用。
Mass-independent oxygen isotope fractionation provides new insights to the research on global changes. Based on an introduction to mass-independent isotope fractionation, this paper discusses the definition of oxygen isotope anomaly [Δ(^17O)] and the production mechanisms of mass-independent oxygen isotope fractionation, particularly the application of mass-independent oxygen isotope fractionation to earth sciences. The productivity assessed with Δ(^17O) is total biosphere productivity. It removes the limitation of only evaluating terrestrial or oceanic productivity individually and establishes a basis for the productivity estimates in a more broad temporal and spatial scale. In particular, using Δ(^17O) to quantify effectively the relative contribution of homogenous and heterogeneous reaction pathways of aerosol sulfate and nitrate opens a new way for investigating the interaction between climate and aerosol. The combination of Δ(^17 O) and S isotope in the ice core not only traces the source and transport of sulfate and nitrate but also provides detailed information on their oxidation processes. The discovery of sulfate and nitrate Δ(^17O) in some arid areas can reasonably reduce the great uncertainty of identifying the sources and genesis of some sediments. This demonstrates that mass-independent oxygen isotope fractionation will play a more important role in the research on (ancient) atmospheric ozone activity, chemistry in volcanic plumes and O, S and N biogeochemical cycle.