针对现有馈能悬架无法很好地兼顾隔振性与馈能性的问题,提出一种混合励磁直线电机与液压减振器集成的车辆悬架减振器,实现输出可调阻尼力与回收振动能量同时进行。基于集总磁路法对混合励磁直线电机进行解析分析,并在Ansoft软件中建立有限元模型,以电磁阻尼力调节范围为目标,优化气隙长度、永磁体高度,确定负载阻值。Matlab仿真结果表明,与传统被动悬架相比,在随机路面激励下,混合励磁悬架不仅提升了隔振性,还能回收部分振动能量,验证了所提出结构的可行性。
Most energy regenerative suspensions fail at achieving a good balance between vibration isolation and energy regeneration performance. A novel hybrid damper for vehicle suspension applications, integrating a hybrid excitation linear motor into a hydraulic shock absorber, was designed which can output adjustable damping fbrce and meanwhile can recover vibration energy. Firstly the analytical analysis of the hybrid excitation damper based on a lumped magnetic circuit method was conducted, the finite element model was established in Ansoft, the gas length and the height of the permanent magnet were optimized taking the adjustment range of electromagnetic damping force as an objective function, and the load resistance was determined. The simulation results show that compared with traditional passive suspension systems, the hybrid excitation suspension damper can effectively improve the vibration isolation pertbrmance and meanwhile recover vibration energy subjected torandom road excitation, which verifies the feasibility of the proposed structure.