位置:成果数据库 > 期刊 > 期刊详情页
基于聚类和支持向量机的胃癌患者住院费用建模
  • ISSN号:1000-8152
  • 期刊名称:控制理论与应用
  • 时间:2017
  • 页码:1-7
  • 便笺:44-1240/TP
  • 分类:TP242[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者地址:宁夏医科大学理学院;
  • 作者机构:[1]宁夏医科大学理学院,宁夏银川750004
  • 相关基金:Supported by National Natural Science Foundation of China (61561040), Natural Science Foundation of Ningxia (NZ16067) and Natural ScienceFoundation of Ningxia Education Department (NGY2016084).
中文摘要:

针对胃癌患者住院费用分类标签设定的复杂性以及传统费用建模算法的局限性,本文提出了一种基于聚类和支持向量机的住院费用建模算法,为胃癌患者住院费用的控制和预测提供方法基础.搜集整理宁夏某三甲医院2009–2011年间1583例胃癌患者为样本,采用K-means对总住院费用逐年聚类得到分类标签,最后通过支持向量机对住院费用进行建模预测以及影响因素分析,用分类准确率作为预测效果的评价指标.实验结果表明胃癌患者住院费用呈逐年增加趋势,其中以西药费为主,占总费用的53.74%.通过K-Means以年份对费用聚类比单纯以费用分布特征聚类的分类准确率提高了13.13%,当核函数选用高斯核函数,且惩罚因子C=10和核参数=1时建立的支持向量机模型最稳定,分类准确率为92.11%.实验结果表明根据年份聚类得到类别标签更合理,结合聚类的SVM来预测住院费用更有效.

英文摘要:

A new modeling method based on clustering and support vector machine(SVM)is proposed to simplify category labels complexity for the hospitalization expenses of gastric cancer patients and overcome the limitation of traditional cost modeling techniques,thereby providing some theoretical evidence to control and predict hospitalization expenses of gastric cancer patients.1583cases of gastric cancer patients in a certain tertiary general hospital of Ningxia from2009to2011were collected as samples.Total hospitalization expenses were clustered by years using K-means to obtain category labels,SVM was used to forecast and analyze the influencing factors of hospitalization expenses.The classification accuracy was used as indexes to evaluate the predicting effect.The experiment result show that hospitalization expenses of gastric cancer patients were increased year by year,and western drugs accounted for most of the hospital expenses(53.74%).The influencing factors of the cost of hospitalization were treatment outcome,surgery,admission situation,hospitalization time,ages and marital status,in which prognosis and surgery were the most important influences.The experimental results showed that the clustering accuracy of K-means by year was increased by13.13%compared to only by distribution characteristics.The gauss kernel function-based SVM was the most stable model,with a classification accuracy rate of92.11%when the penalty factor C and parameter were set to be10and1,respectively.The method clustered by year was more reasonable to get category labels,and it was effective to combine clustering and SVM to forecast the hospitalization expenses.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《控制理论与应用》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:华南理工大学 中国科学院数学与系统科学研究院
  • 主编:胡跃明
  • 地址:广州五山路华南理工大学3号楼516室
  • 邮编:510640
  • 邮箱:aukzllyy@scut.edu.cn
  • 电话:020-87111464
  • 国际标准刊号:ISSN:1000-8152
  • 国内统一刊号:ISSN:44-1240/TP
  • 邮发代号:46-11
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:21084