The present paper is concerned with the longitudinal shear elasticity of three-dimensional icosahedral quasicrystals.By virtue of the Dugdale hypothesis along with the method of complex potential theory, it involves two defect problems of the icosahedral quasicrystals. The first one is the calculation of stress intensity factors and the size of the cohesive force zone in a half-infinite crack. Meanwhile, the crack tip tearing displacements can be exactly derived. The other is the demonstration of the generalized stress intensity factors induced by a sharp V-notch as an extension of a crack. The generalized E-integral around the notch tip gives the energy release rate when the V-notch degenerates into a crack. Apart from their own usefulness in carrying out some simplified crack analyses, the results obtained in this work can particularly serve as a basis for fracture mechanics of anti-plane defect problems of icosahedral quasicrystals.
The present paper is concerned with the longitudinal shear elasticity of three-dimensional icosahedral quasicrystals. By virtue of the Dugdale hypothesis along with the method of complex potential theory, it involves two defect problems of the icosahedral quasicrystals. The first one is the calculation of stress intensity factors and the size of the cohesive force zone in a half-infinite crack. Meanwhile, the crack tip tearing displacements can be exactly derived. The other is the demonstration of the generalized stress intensity factors induced by a sharp V-notch as an extension of a crack. The generalized E-integral around the notch tip gives the energy release rate when the V-notch degenerates into a crack. Apart from their own usefulness in carrying out some simplified crack analyses, the results obtained in this work can particularly serve as a basis for fracture mechanics of anti-plane defect problems of icosahedral quasicrystals.