位置:成果数据库 > 期刊 > 期刊详情页
基于粒子群优化的网络安全态势要素获取
  • ISSN号:0438-0479
  • 期刊名称:《厦门大学学报:自然科学版》
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]福州大学物理与信息工程学院,福建福州350108, [2]福州大学数学与计算机科学学院,福建福州350108
  • 相关基金:国家自然科学基金(10871221,60673161),福建省自然科学基金(A0820002,A0610012)资助
中文摘要:

针对网络安全态势感知中态势要素获取困难问题,给出一种基于粒子群优化的网络安全态势要素获取模型.在获取模型中。引入模糊技术对输入的历史态势要素集进行模糊化预处理后,转化为模糊逻辑规则,映射到神经网络层与层之间.以提高神经网络的学习能力.利用粒子群优化算法优化神经网络的连接权以提高神经网络的学习精度和速度.仿真实验结果表明,该模型是一种有效可行的态势要素提取技术,并具有较好的泛化能力.

英文摘要:

Due to the difficulty of situation element extraction in network security situation awareness, a mechanism for network security situation extraction based on Particle Swarm Optimization (PSO) is proposed. To improve the study ability of neural network,the method uses fuzzy logic technology to pre-fuzz the input historical situation element and then transforms them into fuzzy logic rule mapped between neural network layers. Meanwhile, PSO is used to optimize the connection weight of neural network in order to improve the study accuracy and velocity of neural network. Experiment results show that this model is an effective extraction technology of situation element.

同期刊论文项目
期刊论文 23 会议论文 5
同项目期刊论文
期刊信息
  • 《厦门大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:厦门大学
  • 主编:谢素原
  • 地址:厦门市思明南路422号厦门大学嘉庚三 817-819室
  • 邮编:361005
  • 邮箱:jxmu@xmu.edu.cn
  • 电话:0592-2180367 2187731
  • 国际标准刊号:ISSN:0438-0479
  • 国内统一刊号:ISSN:35-1070/N
  • 邮发代号:34-8
  • 获奖情况:
  • 多次被评为全国、华东地区、福建省的优秀科技期刊,2001年入选国家新闻出版总署评定的"中国期刊方阵",2003年获国家新闻出版总署颁发的"第二届国家科技...,2006年获国家教育部科技司颁发的"首届中国高校精...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,美国剑桥科学文摘,美国生物科学数据库,英国科学文摘数据库,英国动物学记录,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:16575