主要研究与二阶散度型椭圆算子三相伴的分数次积分算子L^-β/2,采用对函数进行环形分解的技术和对算子转化为相应的截断算子的方法,得出其从MKp1,q1^α,λ(R^n)到Mp2,q2^α,λ(R^n)是有界的,从而推广了以前学者的结论.
The generalized fractional integral operators L-β/2 associated to divergence form elliptic operator is studyed. By the methods of studying ring decomposition of functions and thier corresponding truncated operators, their boundedness of the results from spaceMKp1,q1^α,λ( Rn ) to space MKp2,q2^α,λ ( Rn ) were established.