设P_n(x)表示勒让德多项式.即就是P_0(x)=1,P_1(x)=x,当n≥2时有递推关系,P_(n+1)(x)=(2n+1)/(n+1)·xP_n(x)-n/(n+1)·P_(n-1)(x).主要目的 是运用初等方法 以及幂级数的性质讨论一类包含P_(n)(x)的卷积的定积分计算问题,并给出一些确切的计算公式.
For any integer n 〉_ O, let P~(x) denotes the Legendre polynomials. That is, Po(x) = 1, Pl (x) = x, and Pn+l(x)=2n+1/n+1 xPn+1(x) =Pn-1(x) for all positive integer n 〉 1. The main purpose of this paper is using the elementary method and the properties of power series to study the computational problem of some integration of the convolution sums involving Legendre polynomials, and give some interesting computational formulae for