为改善车辆的整车减振性能,建立了车辆8自由度整车数学模型,提出了车辆车身高度与阻尼集成控制的理论分析及计算方法,并设计了可调阻尼减振器及车辆空气悬架集成控制系统。在仿真计算基础上,进行了实车道路试验,分析了车辆集成控制的电控空气悬架及其控制系统对整车动态特性的影响,计算和试验结果基本吻合,实现了车身高度与可调阻尼减振器集成控制的空气悬架与整车的良好匹配,提升了车辆的综合性能。该研究验证了集成控制策略的有效性,同时为电控空气悬架系统研究奠定了基础。
In order to improve vehicle performance, an 8-DOF complete vehicle mathematics model of coach was built and the theoretic analysis and calculating method for integrated control of vehicle body height and adjustable damping were presented to design the integrated control system of tunable damper and the electro-controlled air suspension of coach. On the basis of the simulation calculating, road test of actual vehicle was conducted, the effect of integrated controlled electro-controlled air suspension system was analyzed. The results of simulation calculating and experiment result were consistent. The good matching performance of the air suspension, which was integrated controlled by vehicle body height and tunable damper, and complete vehicle performance achieved, the comprehensive performance of coach was also improved. The study verified the effectiveness of the integrated control strategy and it laid a foundation for the ECAS.