当发动机突然加速或发生突发失效时,空气系统在短时间内由容腔效应和管道流体惯性所形成的压力波动将对某些空气系统零部件产生负面影响。在经过验证的模块化瞬态空气系统仿真程序的基础上,分析了双腔模型的管道不同部位和容腔的压力变化。重点考虑了关键元件的尺寸对压力变化的影响规律。结果表明,此瞬变过程中出现的压力波动与空气系统的几何结构尺寸密切相关。此模型分析方法可以作为研究整机空气系统瞬变过程的基础。
When the engine slam accelerates or suddenly fails,the pressure wave formed by cavity effect and pipe fluid inertia in a short time will have negative impact on some components of air system. On the basis of the simulation program of the modular transient air system,the pressure variation of cavity and different parts of pipe in the double-cavity model is analyzed. The influence law analysis of the size of the key components for pressure wave is mainly considered. Results show that the pressure wave produced in the transient state is closely related to the geometric structure size of the air system. The analysis method of this model can be used as a basis for fast transient research of air system of the integrated engine.