本文首次采用求解密度矩阵的振幅衰减主方程来研究介观RLC电路的量子耗散.我们考虑到电路实际上处在热环境中,就尝试用(经约化了热库自由度以后)密度矩阵的振幅耗散主方程来研究介观RLC电路的量子衰减,即将电路看作是一个哈密顿稳态系统(不显含时),而该系统对应的密度矩阵是处在振幅耗散通道中(耗散系数由回路的品质因数决定)随着时间演化,我们求出该回路密度矩阵的量子耗散及回路能量的衰减规律.我们采用纠缠态表象和有序算符内的积分(求和)技术探讨此问题,可以给出终态密度矩阵的解析形式,具有简捷的特点.
For the first time, as far as we know, we use the approach of solving the amplitude-decaying master equation of density matrix to study the quantum dissipation of a mesoscopic RLC circuit, and thus find out the attenuation law of circuit energy. We then use the entangled state representation and the technique of integration within an ordered product of operators to explore this problem.