位置:成果数据库 > 期刊 > 期刊详情页
基于改进粒子群优化算法的火电厂机组负荷分配
  • ISSN号:1671-4598
  • 期刊名称:《计算机测量与控制》
  • 时间:0
  • 分类:TP273.23[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]中国矿业大学信息与电气工程学院,江苏徐州221008
  • 相关基金:国家自然科学基金资助项目(60974050).
中文摘要:

以坑口电厂厂级监控信息系统的机组负荷在线优化分配功能模块为应用背景,针对模块所运用的基本粒子群优化算法在优化过程中容易陷入局部收敛、收敛速度慢的缺点,提出一种基于惯性权重非线性减小策略的改进粒子群优化算法,使惯性权重呈对数减小;测试函数仿真结果表明,改进粒子群优化算法在收敛速度和寻优精度方面,优化性能均优于基本粒子群优化算法;通过MATLAB与Visual C++混合编程,开发了机组负荷在线优化分配功能模块,提高了算法的计算效率和工程应用价值.

英文摘要:

This paper took function module of online unit load economic dispatch in plant level supervisory information system for pithead power plant as application background,and an improved particle swarm optimization algorithm was proposed based on strategy of nonlinear reduction in inertia weight for the drawbacks of falling into local convergence easily and slow convergence rate compared to the basic particle swarm optimization algorithm.This improved particle swarm optimization algorithm could make the inertia weight show a logarithmic decrease.Simulation result of test function showed that the improved particle swarm optimization algorithm was better than basic particle swarm optimization algorithm in aspects of convergence rate and accuracy of researching optimal solution.Through admixture programming with MATLAB and Visual C+ +,the function module of online unit load economic dispatch was developed,and this improved computational efficiency and engineering application value.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机测量与控制》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团公司
  • 主办单位:中国计算机自动测量与控制技术协会
  • 主编:苟永明
  • 地址:北京海淀区阜成路甲8号中国航天大厦405
  • 邮编:100048
  • 邮箱:ly@chinamca.com
  • 电话:010-68371578 68371556
  • 国际标准刊号:ISSN:1671-4598
  • 国内统一刊号:ISSN:11-4762/TP
  • 邮发代号:82-16
  • 获奖情况:
  • 中国学术期刊综合评价数据库来源期刊,中国科技论文统计源期刊,“国家期刊奖百种重点期刊”
  • 国内外数据库收录:
  • 美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版)
  • 被引量:27924