提出了一个能优化GF(3^m)上立方运算电路的浓缩法方法.采用该方法处理了580种GF(3m)有限域上立方运算电路,统计数据表明:若不可约多项式形如xm+p1x1+x0+x0,m<256,除极少数情况外,浓缩法优化后的立方运算电路的加法器不超过1.35m个.给出212个不可约多项式,用浓缩法优化后的立方运算电路的加法器数量不超过m个.
This paper proposed a new method for generating an optimized circuit for cubic arithmetic in Galois field GF(3^m). After applying the method on 580 different cubic arithmetic circuits in Galois field GF(3m), the statistical data shows that for xm+p1x1+x0+x0,m〈256 most irreducible polynomials, our meth- od can generate a cubic arithmetic circuit with less than 1.35m adders. For 212 irreducible polynomials, our method can generate a cubic arithmetic circuit with less than m adders.