本文研究了赋权分数桥dXt=-α(Xt/T-t)dt+dBt-(a,b),0≤t0的参数估计问题.其中B^a,b是参数为a〉-1.|b|〈1,|b|≤a+1的赋权分数布朗运动.似设对随机过程X_t进行离散观测ti=i△n,i=0,…,n,且Tn=n△n.本文构造了α的最小二乘估计αn.证明了当n→∞时,αn依概率收敛到α.
In this paper,we consider the problem of estimating the unknown parameterα〉0 of the weighted fractional bridge dXt=-α(Xt/T-t)dt+dBt^a,b,0≤tT,where B^a,b is a weighted fractional Brownian motion of parameters a〉-1,|b|〈1,|b|≤a+1.Assume that the process is observed at discrete time ti=i△n,i=0,…,n and Tn=n△n,we construct a least squares estimator αn of α and prove that αn converges to α in probability as n→∞.