对免疫克隆选择算法进行详细描述和分析,并将其应用于新安江模型的参数率定当中,对于人工生成的理想水文资料,分别采用SCE-UA算法、并行遗传算法(PGA)、改进粒子群算法(SMSE-PSO)和本文提出的免疫克隆选择算法(ICSA)进行参数率定,比较结果可知I,CSA收敛结果更好,效率和精度更高,将其应用实测资料中,预报结果均达到规范要求,证明ICSA是一种更为有效的新安江模型参数率定方法。
An immune clonal selection algorithm(ICSA) is described and analyzed and it is used to calibrate the ideal hydrological data generated by a hydrological model of Xin'anjiang hydropower.To calibrate the model parameters,four algorithms are examined and compared,shuffled complex evaluation algorithm(SCE-UA),parallel genetic algorithm(PGA),and parallel-swarms shuffling evolution algorithm(SMSE-PSO) and immune clonal selection algorithm(ICSA).The results show higher efficiency and accuracy of ICSA,and its application to analysis of practical data satisfies the design requirements.ICSA is a more effective method for calibrating hydrologic model.