位置:成果数据库 > 期刊 > 期刊详情页
高能物理云平台中的弹性计算资源管理机制
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国科学院高能物理研究所,北京100049, [2]中国科学院大学,北京100049
  • 相关基金:国家自然科学基金(No.11575223,No.11605223,No.11305192,No.11605224).
中文摘要:

虚拟化技术作为一种新的资源管理技术,正在高能物理领域得到越来越广泛的应用。静态虚拟机集群方式已经逐渐不能满足多作业队列对于计算资源动态的需求。为此,实现了一种云计算环境下面向多作业队列的弹性计算资源管理系统。系统通过高吞吐量计算系统HTCondor运行计算作业,使用开源的云计算平台Openstack管理虚拟计算节点,给出了一种结合虚拟资源配额服务,基于双阈值的弹性资源管理算法,实现资源池整体伸缩,同时设计了二级缓冲池以提高伸缩效率。目前系统已部署在高能所公共服务云IHEPCloud上,实际运行结果表明,当计算资源需求变化时系统能够动态调整各队列虚拟计算节点数量,同时计算资源的CPU利用率相比传统的资源管理方式有显著的提高。

英文摘要:

As a new resource management technology,virtualization technology is more and more widely used in the field of high-energy physics.Static virtual machine cluster mode has been unable to meet dynamic demand for computing resource of multi-job queues.To solve this problem,an elastic computing resource management system under cloud computing environment has been designed and implemented.The high throughput computing system-HTCondor is used to run high-energy physics jobs and the cloud computing platform-Openstack is used to manage virtual computing nodes.An elastic resource management algorithm based on dual thresholds is proposed,combined with resource quota service.A twostage pool is designed to improve the efficiency of resource pool expansion.At present,the system has been deployed in IHEPCloud.The practical run results show that with the changes of resource demand,the system adjusts the number of virtual computing nodes dynamically.CPU utilization of the cluster is significantly increased as well.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887