位置:成果数据库 > 期刊 > 期刊详情页
LPQ与NMF特征融合的人脸识别
  • ISSN号:1003-0972
  • 期刊名称:《信阳师范学院学报:自然科学版》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京理工大学泰州科技学院计算机科学与技术系,江苏泰州225300, [2]宁波工程学院电子与信息工程学院,浙江宁波315211
  • 相关基金:国家自然科学基金项目(60875010)
中文摘要:

提出一种融合局部相位量化(LPQ)和非负矩阵分解(NMF)进行人脸识别的方法.该方法首先采用LPQ算子提取分块人脸图像的LPQ直方图序列(LPQHS),根据每块的贡献度,得到权重的直方图序列(Weight LPQHS),然后采用NMF方法提取其非负子空间及其系数矩阵,最后根据最近邻原则进行识别.在AR和YALE标准人脸数据库上的实验结果表明,该方法具有较高的识别率.

英文摘要:

A method of face recognition based on local phase quantization(LPQ) and non-negative matrix factorization(NMF) was proposed.Firstly,LPQ operator was used to extract the LPQ Histogram Sequence(LPQHS) from block face images.According to the contribution of each face block,weight LPQ Histogram Sequence(Weight LPQHS) was obtained.Secondly,NMF was applied to weight LPQHS for extracting non-negative subspace and the corresponding coefficient matrices.Finally,nearest neighbor principle was utilized in face recognition.The simulation experiments illustrated that this method had better recognition rate on the AR and YALE standard face database.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《信阳师范学院学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:信阳师范学院
  • 主办单位:信阳师范学院
  • 主编:刘彦明
  • 地址:河南省信阳市南湖路
  • 邮编:464000
  • 邮箱:xblk@xynu.edu.cn
  • 电话:0376-6393516
  • 国际标准刊号:ISSN:1003-0972
  • 国内统一刊号:ISSN:41-1107/N
  • 邮发代号:36-122
  • 获奖情况:
  • 河南省优秀科技期刊,河南省优秀学报
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),英国农业与生物科学研究中心文摘,波兰哥白尼索引,德国数学文摘,美国剑桥科学文摘,英国动物学记录,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:5214