位置:成果数据库 > 期刊 > 期刊详情页
PSO优选参数的SVR水质评价方法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]重庆大学光电技术及系统教育部重点实验室,重庆400030, [2]河西学院机电工程系,甘肃张掖734000
  • 相关基金:国家自然科学基金(No.40671133); 重庆市科技攻关重点项目(No.CSTC2009AB2231)
中文摘要:

为进一步提高多光谱图像水质反演的评价精度,提出了一种基于PSO优选参数的SVR水质评价方法。该模型利用高分辨率多光谱遥感SPOT-5数据和水质实地监测数据,用粒子群优化算法对支持向量回归的参数进行了优化。首先,分析和筛选渭河陕西段水质实地监测数据,得到符合条件且具有代表性的四类水质变量。接着,使用五种大气校正方法对遥感影像进行大气辐射校正。然后,对各水质变量与遥感数据波段进行相关性分析和水质反演。最后,运用该模型以渭河水质监测数据为例进行了水质评价。实验结果表明,该方法可以较好地实现水质综合评价,能从整体上准确、客观地反映河流水质情况,为内陆河流环境评价提供了一种新方法。

英文摘要:

In order to improve water quality evaluation of multi-spectral image accurately,this paper puts forward a model for water quality evaluation based on Support Vector Regression with parameters optimized by particle swarm optimization algorithms.The model uses high-resolution multi-spectral remote SPOT-5 data and the water quality field data,the parameters of Support Vector Regression are optimized by particle swarm optimization algorithms.First,the water quality parameters of Weihe River in Shaanxi Province are analyzed to choose four representative water quality parameters.Five methods are used to finish the correction of atmospheric radiation in remote sensing images.Then,the relevance between water quality parameters and remote sensing data is analyzed and retrieved.Finally,the proposed model is applied to the water quality evaluation of Weihe River in Shaanxi Province.The result of experiment shows the proposed method can give a better quality comprehensive evaluation,and can reflect the water quality of rivers accurately and objectively from the overall.It provides a new approach for evaluation of environment to inland rivers.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887