考虑如下一类分布族:F(x;θ)=1-[g(x)]^θ,A≤x≤B,θ〉0,其中g(x)是关于x单调递减的可微函数,且g(A)=1,g(B)=0.在对数误差平方损失函数和MLINEX损失函数下,得到了参数的Bayes估计和Minimax估计.
In this paper, we study the unknown parameter of a class of distributions F ( x; θ) = 1 - [ g (x) ]^θ, A ≤ x≤B,θ 〉0,where g(x) is a decreasing and derivative function with g(A) = 1 ,g(B) =0. We obtain the Bayesian estimator and minimax estimator under squared log error and MLINEX loss functions.