对多维自适应设计广义线性模型中形如∑i=1^nxi(yi-μ(x′iβ))=0的拟似然方程,在limn→∞λn^3/4/λn=0和其他一些正则性的假定之下,论文证明了上述拟似然方程的解,即极大拟似然估计的渐近正态性,此结果推广和改善了文[4]中的相关结果,其中λn和λn^-分别为∑i=1^n xix′i的最小特征根和最大特征根,x是有界的p×q阶设计矩阵.
'or the quasi-likelihood equation ∑i=1^nxi(yi-μ(x′iβ))= 0 in multivariate generalized linearmodel with adaptive design, underlimn→∞λn^3/4/λn= 0 and some regular assumptions, we proved that asymptotic normality of solution of the above equation ( i. e. , maximum quasi-likelihood estimator), which extended and improved the result of the literature [ 3 ], where λn and λn^- denoted minimum eigenvalue and maximumeigenvalue of ∑i=1^n xix′i respectively, xi was a bounded p × q design matrix.