土体在剪切变形过程中产生主应力方向的旋转时,主应变增量方向与主应力方向之间存在着非共轴现象,然而传统的弹塑性本构模型未能考虑该现象的影响。通过在屈服面的切线方向增加一项非共轴塑性应变增量,即可实现对非共轴现象的反映。采用显式积分算法和自动分步方法,将非共轴本构模型运用到桶形基础地基承载力问题的有限元计算中,并讨论了流动法则、内摩擦角、膨胀角等因素与非共轴模型的联系。计算结果表明:采用有限元程序默认容许误差时,该本构模型可达到理想的收敛精度,并且,该模型对关联、非关联流动法则均适用。采用共轴模型进行数值计算时,不同流动法则对计算结果的影响可以忽略;采用非共轴模型时,不同流动法则的计算结果之间存在差异。非共轴现象对地基承载力-位移曲线具有软化作用,并且,该软化作用在采用非关联流动法则时变得更加明显。
土体在剪切变形过程中产生主应力方向的旋转时,主应变增量方向与主应力方向之间存在着非共轴现象,然而传统的弹塑性本构模型未能考虑该现象的影响。通过在屈服面的切线方向增加一项非共轴塑性应变增量,即可实现对非共轴现象的反映。采用显式积分算法和自动分步方法,将非共轴本构模型运用到桶形基础地基承载力问题的有限元计算中,并讨论了流动法则、内摩擦角、膨胀角等因素与非共轴模型的联系。计算结果表明:采用有限元程序默认容许误差时,该本构模型可达到理想的收敛精度,并且,该模型对关联、非关联流动法则均适用。采用共轴模型进行数值计算时,不同流动法则对计算结果的影响可以忽略;采用非共轴模型时,不同流动法则的计算结果之间存在差异。非共轴现象对地基承载力-位移曲线具有软化作用,并且,该软化作用在采用非关联流动法则时变得更加明显。