首次使用五氧化二铌纳米棒作为原料通过水热反应合成出60-150 nm宽、几个微米长的高产率、斜方晶系铌酸钾纳米棒晶体。使用X射线衍射仪(XRD)、扫描电镜(SEM)、透射电镜(TEM)、高分辨透射电镜(HRTEM)、选区电子衍射技术(SAED)对铌酸钾纳米棒晶体的形貌和结构进行了表征。合成的铌酸钾纳米棒表现出二次谐波产生响应,并发射出高效率的纳米二次谐波光线。铌酸钾纳米棒晶体沿着[001]方向生长。合成的铌酸钾纳米棒以其优异的非线性光学性能在纳米光学器件中的应用具有很好的发展前景。
High yield orthorhombic single-crystalline KNbO_3 nanowires with widths of 60-150 nm and lengths up to a few microns were synthesized, using Nb_2O_5 nanobelts as reactants as well as templates via the hydrothermal process. The products were determined by XRD, and the morphology and the structure were characterized by SEM, TEM, HRTEM, and SAED techniques. The growth direction of KNbO_3 was determined to be the [001] crystallographic direction. Results show that synthesized nanowires exhibit a second harmonic generation(SHG) response, an efficient nanoscale second harmonic light source. The excellent nonlinear optical properties of KNbO_3 have potential applications in nano-optical devices.