位置:成果数据库 > 期刊 > 期刊详情页
链状卡塔型苯图的反强迫数
  • 时间:0
  • 分类:O157.5[理学—数学;理学—基础数学]
  • 作者机构:[1]惠州学院数学系,广东惠州516007
  • 相关基金:基金项目:国家自然科学基金资助项目(11226286);惠州学院博士启动基金资助项目(C5110208).
作者: 蒋晓艳[1]
中文摘要:

设G是一个有完美匹配M的图.若G的边集S满足G-S有唯一完美匹配,则称S为反强迫集.包含边数最少的反强迫集叫做极小反强迫集,其边的数目叫做图G的反强迫数.DamirVukiěevi?等曾给出链状卡塔型苯图的反强迫数,但我们发现该结论存在问题,本文修正了并完善了链状卡塔型苯图的反强迫数.

英文摘要:

Let G be a graph that admits a perfect matchingM. An anti-forcing set of G is the edge set S such that G-S has a unique perfect matching. The anti-forcing set of the smallest cardin Damir ality is called the minimal anti-forcing set, and its cardinality is the anti-forcing number of G and Trinajatic gave an anti-forcing number of chain cats-condensed benzenoids, but we find the conclusion has some faults. In this paper, we correct the result and consummate the anti-forcing number of cata-condensed benzenoids.

同期刊论文项目
同项目期刊论文