设{Xk,1≤k≤n)独立同分布,x1,n,X2,n,…,xn:n为其顺序统计量.当xk服从三参数分别为u,σ,r(u∈R,σ〉0,r〉0)的Pareto分布时,作者得到了其极端顺序统计量X1,n和Xn:n的渐近分布;当k(k〉1)固定时,得到了Xk,n和Xn-k+1,n的渐近分布,并且证明其极端顺序统计量X1:n和Xn:n是渐近独立的.
Let {Xk ,1 ≤ k ≤ n} be independent and identically distributed random variables, and X1,n ,X2,n …, Xn:n be their order statistics. When Xk follows Pareto distribution with three parameters u,σ,r (u ∈ R,σ〉 0, r〉0), the asymptotic distributions of their extreme order statistics X1,n and Xn,n are obtained. For a fixed integer k 〉 1, the asymptotic distributions of Xk,n and Xn-k+1 are also obtained.What's more, it is proved that X1,n and Xn,n are asymptotically independent.