为解决夸张能量守恒定律的一个本地假弧长度方法(LPALM ) 在这份报纸被介绍。这个方法的关键想法来自原来的弧长度方法,批评的点被转变计算空间通过绕过。方法基于物理变量的本地变化选择不连续的模板并且介绍假弧长度参数,然后从物理空格转变管理方程到弧长度空格。以便在弧长度坐标解决这些方程,在动人的网孔方法联合网孔点的速度是必要的,然后变换在回到物理空间的 arclength 空间的物理变量。数字例子与不连续的起始的值为方程的线性方程,非线性的方程和系统证明了新途径的有效性和概论。非摆动答案能被为包含吃惊和变成稀薄波浪的问题调整参数和网孔精炼数字获得。
A local pseudo arc-length method(LPALM)for solving hyperbolic conservation laws is presented in this paper.The key idea of this method comes from the original arc-length method,through which the critical points are bypassed by transforming the computational space.The method is based on local changes of physical variables to choose the discontinuous stencil and introduce the pseudo arc-length parameter,and then transform the governing equations from physical space to arc-length space.In order to solve these equations in arc-length coordinate,it is necessary to combine the velocity of mesh points in the moving mesh method,and then convert the physical variable in arclength space back to physical space.Numerical examples have proved the effectiveness and generality of the new approach for linear equation,nonlinear equation and system of equations with discontinuous initial values.Non-oscillation solution can be obtained by adjusting the parameter and the mesh refinement number for problems containing both shock and rarefaction waves.