落叶松属常分布于高纬高海拔地区,年际生长节律明显,在全球气候变化重建研究中具有重要的地位。本文对欧洲、北美、亚洲地区主要的落叶松属树种近年来取得的成果进行了综合分析,以地区为单位,梳理研究思路,概述研究重点及特色。全球落叶松属研究以对气温敏感性较高的轮宽为主,约占72%;其次是最大晚材密度,约占16%。其中,尤以欧洲落叶松和西伯利亚落叶松研究成果最多。在各地区中,欧洲的研究成果约占61%,倾向于大空间尺度多树种综合研究。北美研究常结合特殊的地形条件及生态事件进行,落叶松叶蜂虫害信息的提取是研究的重点。亚洲地区以西伯利亚落叶松为主,在20世纪90年代就已出现大量的重建成果。中国落叶松属有10种1变种,但研究相对落后于其他地区,近年来才在一些树种上取得突破,并出现了树轮密度的研究成果,未来应重点转向空间“场”的研究和多树种综合研究。
As a regional climate proxy, tree-ring data has the advantages such as high resolution, widespread dis- tribution, long time series, precise dating and so on. Nowadays, reconstruction of historical climate change is be- coming a more and more important part in global climate change research. Therefore, Tree-ring data plays a huge role in climate change research. Belonging to the Gymnospermae phylum, pine family, and growing in the temperate, cold temperate, and frigid zones of the Northern Hemisphere, Larix Miller, with regular growth rhythm every year, has a significant position in the research on historical global climate change. Especially in China, there are ten larch species and one variety, all hardy, photophilous, and dominant timber classes, located along the margin of the East Asian Monsoon zone. In this paper, the author has made a comprehensive analysis on recent achievements of main larches in Europe, North America and Asia, combined the development routes, and drawn the conclusions as follows: (1) Among all researches on Larix Miller, tree-ring width dominated, about 72%, followed by maximum latewood density, approximately 16%. In recent years, the research focus be- gan to lean to density from width. (2) Both width and density responded to air temperature better. Thus, they played a more significant role in the temperature research of Northern Hemisphere. (3) Larix decidua Mill. and Larix sibirica Ledeb. contributed to the most achievements, perhaps, because more of them spreaded in the re- gions of high elevations or latitudes, contrary to Larix himalaica (Cheng et L. K. Fu.) Therefore, the potential of a special species' application to dendroclimatology may be determined by its number and distribution. Among all regions, European received the most fruitful results, 61% or so, tending to large spatial scale and multispe- cies. Especially after 2000, the discussion on response divergence and stability took the lead. The Alps became the hot area. In North America, density sensitiv