提出了一种基于数字微镜器件的光子计数对应鬼成像方案。该方案采用数字微镜器件对光源进行调制,通过时间相关单光子计数技术获取光子计数值,并利用对应鬼成像算法计算目标物体的像。结合鬼成像理论和对应鬼成像理论阐明了光子计数对应鬼成像原理,并通过实验对该方案进行了验证。研究结果表明,该方案能够实现弱光成像。利用该方案可以获得与传统鬼成像效果相当的成像质量,但降低了图像重建过程中的计算量和算法复杂度。此外,该方案略去了阵列探测器对光强分布的测量,利用一个不具有空间分辨率的单光子探测器结合对应鬼成像算法,即可得目标物体的像,同时也能获得目标的距离信息。
The correspondence ghost imaging scheme via photon counting based on micromirror device is proposed. In this scheme, a digital micromirror device is used to module the light source, the time-correlated single photon counting technology is introduced to acquire the photon counting value, and correspondence ghost imaging is used to calculate the image of target object. The principle of correspondence ghost imaging via photon counting is clarified with ghost imaging theory and correspondence ghost imaging theory, and the proposed scheme is verified by experiments. The research results show that the proposed scheme can realize weak light imaging. The images achieved by the proposed scheme are as good as those by traditional ghost imaging while the computational complexity in the process of image reconstruction is reduced. Besides, the measurement of intensity distribution by array detector is omitted in the proposed scheme and the image of target object is acquired with a single photon detector which has no spatial resolution, combined with correspondence ghost imaging algorithm. In the meantime, the proposed scheme can provide distance information of the object.