推荐系统的多样性正日益成为评价推荐质量的重要指标。为提高传统协同过滤推荐算法的个体多样性,在基于项目的协同过滤推荐算法的基础上,加入项目的类别属性信息,定义项目类别贡献函数以改进预测评分公式,提高与目标项目类别不完全相同的项目得分,实现最优项目推荐。实验结果表明,在保证一定推荐精确度的前提下,改进算法增强了推荐系统的个体多样性,具有更高的推荐质量。
Diversity of recommendation system becomes an important index of evaluating the quality of the recommendation.To improve the individual diversity of traditional collaborative filtering recommendation algorithm,the improved algorithm is based on item-based collaborative filtering recommendation algorithm,which adds item category information and defines a contribution function to optimize the formula of prediction score.It increases the items scores which have not exactly the same item category with the objective item,and achieves the best items recommendation.Experimental result proves the improved algorithm strengthens the individual diversity of recommendion system which at the same time keeps a high precision.As a result,it has a higher quality of recommendation.