超疏表面通常采用低表面能和微纳米结构相结合的方法来进行构建。利用含有硫酸铜与硫酸的水溶液,通过电沉积方法制备微纳尺寸的铜枝晶结构,然后通过十四酸的无水乙醇溶液修饰晾干后,制备出阴极超疏水表面。采用傅里叶红外光谱(FTIR)、扫描电镜(SEM)、X射线(XRD)、接触角测量仪等测试所制备表面的表面结构、化学组成和超疏特性。结果表明:制备超疏表面所需的最短时间仅为20 s,最大的接触角为166°,滚动角小于2°;超疏表面由具有致密、规则的铜枝晶结构组成。这种制备超疏表面的方法快速、简单、易操作及成本低,所制得的超疏表面也易修复,具有较大的工业应用前景。
The superhydrophobic property is believed to be governed by low surface energy materials and surface geometrical micro/nano structures. Micro/nano structure of copper dendrite was prepared in an aqueous ethanol electrolyte containing copper sulfate(CuSO_4·5H_2O) and sulfuric acid(H_2SO_4) by a rapid electrodepositing process, and then it was modified by ethanol solution of myristic acid. Finally, the cathodic superhydrophobic surface was obtained. Morphological features, chemical composition and superhydrophobicity of these superhydrophobic surfaces were investigated by scanning electron microscopy(SEM), Fourier-transform infrared(FTIR) spectrometry, X-ray diffraction(XRD). The results demonstrate that the micro/nano scales structure is composed of copper dendrite. The maximum contact angle is about 166?, rolling angle is less than 2? and the needed shortest electrolysis time is about 20 s. This method is rapid, facile, simple, and cheap, and has an extensive prospect for the industrial applications.